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Statistical properties of chaos at onset of electroconvection
in a homeotropically aligned nematic layer
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The recently discovered chaos at the onset of electroconvection in a homeotropically aligned nematic layer
caused by slow random long-wavelength modulations of a roll pattern is discussed. The temporal autocorre-
lation function for components of the order parameter is expressed in terms of probability density for random
drift velocity of the pattern. It is shown that despite the fact that the problem has at least two different
characteristic times associated with the slow pattern dynamics, only one of them enters into the autocorrelation
function.[S1063-651X99)12003-9

PACS numbds): 47.52+j, 47.27.Cn, 47.65¢a, 61.30.Gd

In the present paper a “paradox of two correlation times” has a nonzero projection on the plane of the nematic layer.
(see below for spatiotemporal chaos at the onset of electro-Since the azimuthal orientation of the director is not imposed
convection in a homeotropically aligned nematic layiie by any external factor the system is degenerate with respect
director is perpendicular to confining surfagésdiscussed, to arbitrary rotations of the director around any axis perpen-
exploded and removed. As a result, a simple formula for thelicular to the layer's plane. For this reason, beyond the
temporal autocorrelation function of the problem is obtainedthreshold of convective instability the corresponding long-
Systematic experimental study of disordered patterns invavelength rotational modes become undanid€dl On the
electroconvection under the specified conditions began rathether hand, in a patterned state beyafdthe local orienta-
recently and was conducted, generally, by two groups; setion of the roll wave vectok is rigidly connected with the
Refs.[1-3] and[4—6]. Both groups observe the disordered azimuthal orientation of the directdsee, e.g.[7]). Thus,
patterns at the very onset of electroconvection. Howeverany change of the former causes the corresponding change of
there is a certain discrepancy in details of their observationthe latter. For rolls that are perfectly straight and parallel to
and measurements. The discrepancy probably is attributablach other, a change in azimuthal orientationkomeans
to differences in cells and material constants. To avoid misfotation of the pattern as a whol&oldstone modg In this
understanding, we emphasize that in the case of discrepancgse, in a weakly nonlinear regime <@<1), undamped
we refer to the results of Reffl—-3] rather than to those of modes detaching from the Goldstone one should correspond
Refs.[4—6]. According to these results, spatiotemporal chaogo random rotations of different fragments of the pattern with
(STO is caused by continuous random spatiotemporathe characteristic spatial scale of the fragment of oriler
modulation of the local orientation of convective rolls. The Thus, changes of the components of the order parameter
characteristic spatial scale of the modulatibrimacroscale  (such as charge density, the velocity vector,)edt.a given
diverges at=0, whereez(vz—vﬁ)/vg stands for the nor- fixed point are caused by drift of the pattern by this point
malized control parameteY, for the applied voltage and,  associated with the rotations.
for the threshold of convective instability. At<Oe<<1 this One of the most important characteristics of any random
scale is much greater than the corresponding microscale girocess is its autocorrelation function. For the problem in
the problem\ (double the roll diametér It makes the prob- question, temporal autocorrelation functions have been stud-
lem qualitatively different from other examples of chaos atied already, based upon the results of computer simulations
onset, such as, e.g., STC associated with Hopf bifurcatiohl1] and real experimeri,3,6. Both the computer simula-
supplemented by the Benjamin-Feir destabilization, or thdions and the experiments say that the problem has a single
one caused by Kapers-Lortz instability(see, for instance, correlation timer scaled as ¥ and that the autocorrelation
review [7], or for more recent results Refi8]), where the functions fall off to zero monotonically with increase of
destabilizing modes have the same spatial scale as that ftime.
the pattern itself. Note, however, that according to the described nature of
The phenomenon is observed in a nematic with negativéhe STC, the problem has at le&sb different characteristic
dielectric anisotropy, where the Tedericksz transitio9] time scales, viz.\ /v, and Alv,, wherev, stands for the
precedes the convective instability. Due to the transition theharacteristic drift velocityprovided there is a uniquey;
purely homeotropic alignment of the director is distorted, sootherwise the case becomes even more complifatéc
that at the threshold of the convective instability the directorpattern consists of strictly spatially periodic rolls, its rotation
as a whole gives rise to an autocorrelation function periodic

in time with the period\/v, [12]. For this reason, it seems
*Present address: Department of Applied Physics, Faculty of Enpatural to expect that for the true patterns distorted by cha-
gineering, Fukui University, Bunkyo 3-9-1, Fukui 910-8507, Japan.otic long-wavelength modulations, the autocorrelation func-
Electronic address: tribel@scroll.apphy.fukui-u.ac.jp tions are generally oscillating. The oscillation period should
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be of ordern/vg, while the oscillation amplitude should de- On the other hand, we are interested in the case in which the
cay on a much bigger time scale of ord&fv,. In other phase of the cosine in EfL) may be big enough. It results in
words, there should bsvo substantially different correlation the conditionwgt>1, wherewy=kv,. Consistency of this
time scales for the oscillations themselves and their decayondition with Eq.(2) gives rise to the inequality/Ak>1,
respectively. This expectation disagrees drastically with rewhich is always satisfied at smadl Thus, at smalle the
sults of Refs.[2,3,6,1] (the paradox of “two correlation leading approximation to the autocorrelation function reads
times”). One of the goals of the present paper is to show that
the expectation is wrong and the above-mentioned numerical ,
and expperimental result% are explained in a guite simple man- b(t)= 7<C°§“"(t i+ (3)
ner.

Let u(r,t) be a scalar quantity denoting any component ofso that the second characteristic time of the problef,
the order parameter. Since we consider the autocorrelatiotioes not enter into the expression at all.
function at a given fixed value af, only the time depen- Note that the averaging oveéf is equivalent to that over
dence ofu is important. According to the specified scenario, w. Actually, transforming the integral ovef into an integral
such a dependence originates in a drift of almost spatialllsum by discretizing ofw [letting w(t') have only discrete
periodic roll pattern, so it has the form values from a setw,, where the “spacing”Aw=wp, 1
— w, has the same value at any, and rearranging terms in
the sum, putting together all terms with the same value of
w,, We arrive at the expression

2

t
u=Asin( f o(t")dt' +aq
0

cog w(t')]dt'= lim >, (cosw,)

Aw—0 N

whereA may be regarded as a consthb8], o=kv, kis a 1 (1
constant roll's wave numbey, is the drift velocity slowly Ff
varying in time, andyg is a constant initial phase. Then, for

the autocorrelation functios(t) we have

1
X (AR AL+ ), (4)
d(t)=(u(rt"+tu(r,t’)) =

— A2 sin jt/+tw(t”)dt”+a whereAt()” At | ... is the entire set of time segments
0 0 within which the discretized functiomw,(t) has a given
, value. Bearing in mind that by definition
X sin ft o(t")dt"+ aq
0 L W A @
lim — (At +At) 9+ -+)
2 [ T —o T,
= ?< cos( f w(t”)dt”)>
t is the probability for a random functiom,(t) to have a
A2 1. given value, setting\ w to zero, and replacing the sum in Eq.
:?< cos{w(t’)t+§w(t’)t2+ o > (1) (4) by the corresponding integral, we transform Eg). into
the form
herew denotes time derivative and A2
¢m=7jmwmmwm@ ©)

1 '
<>E lim _jT("‘)dt' - .
T T'J0 wherep(w) stands for the probability density. From the nor-

malization condition, it follows thaf p(w)dw=1. Thus, in-
(we employed trivial trigonometric transformations and tooktegral (5) always converges, being a smooth, differentiable
into account that the cosine of a sum of two phases is &nction oft. Note thatp(w) should be an even function of
rapidly oscillating function ot’ and therefore its average o due to the equivalence of clockwise and counterclockwise
vanisheg rotations, so thatw®"*1)=0, n=0,1,2... .

Now note that ate small enough andany fixed t the Equation(5) yields a number of important conclusions.
characteristic value obt? in the argument of the cosine in First, expressior(5) is an even function of, which has a
Eq. (1) is always much smaller than one, i.et2, and that ~SM0Oth maximum &t=0 and tends to zero &t-. In other
all terms that are higher order trare also negligible quan- words, none of the generic properties of autocorrelation

tities. Actually, a noticeable change of requires a time of unctions[14] is violated. . -
. L s 2.2 Second, none of the correlation characteristics of random
order Alvg. It yields the estimationwt“=0O(kvgt</A)—0

e . : w enters into Eq(5). The only quantity the correlation func-
at e—0 due to the vanishing af and the divergence df, in tion ¢(t) depends on is the probability densjtyw).

this limit. At finite small e negIeCt Of(,()tz results in the Th”‘d’ if p((l)):5(0)_0)0), which Corresponds to a
following restriction fort: strictly spatially periodic pattern with a fixed drift velocity,
Eq. (5) yields ¢(t) = (A%/2) coswt, i.e., the mentioned oscil-

t< i ﬁ _ @) lating behavior of the autocorrelation function is recovered.

vy Y k In the opposite limit, whemp(w) is a smooth function with a
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certain unique characteristig, (now wqy describes the dis- £
persion of the distribution integration in Eq(5) results in a

¢(1) of the form (A%/2)f(wot), where f(x) is a smooth 1
function, satisfying the conditiofi(0)=1 and falling off to 0.8
zero atx of order one. It means the problem possesses a

single correlation time, which is nothing but 1/w,. 0.6

It should be emphasized that the obtained results are valid
at t>r, i.e., the long-time behavior of the autocorrelation

function is discussed. Only the very tail ¢{t) att violating 0.2
condition (2) deviates from expressiofb). This tail, how- N
ever, is not of interest, sincé(t) is practically zero in this 1 > 3 4
region.
To understand which of the limitp(w) = §(w— w;) or a FIG. 1. The autocorrelation functiofi(x), obtained for the

smooth broad distribution, is closer to reality, we have toGaussian distribution of random [see Eqs(6), (7)].
remember the proposed mechanism of chaotization associ-
ated with rotations of different fragments of a roll pattern
around random axes with random angular velocities. ObviSeries(7) converges at any finite. The functionf(x) de-
ously, in this case the distributiqn(w) must have a certain fined according to Eq(7) falls off monotonically to zero
nonzero dispersion. Note further thag may be estimated as ith increase ok; see Fig. 1. Despite the fact thi(ix) is not
a product of the characteristic angular velocity of the rotationyeqyced to a simple exponential function, its approximation
(d¢ldt, whereg is the azimuthal angle of the direciand by such a function may be quite reasonable.
the_ ch_aracteristic_ spatial scale of _the rotating_ fragment, Basically, Fig. 1 is in good agreement with experimental
which is A. Adopting for these quantities thescaling eém- ¢ 65 presented in Ref@,3]. A certain difference in details
ployed in Refs[11], i.e., supposing thaAocl/\/E and rota-  (yroader maximum at=0 and sharper decay at<1 com-
tion through an angle oD(\/e) takes time=1/e, we obtain pared to the experimental curyeshould not be overevalu-
a_lumq_uecha_ractensnc valueps e. Thu_s, ?he _model IN QUES- " ated. First, our intention is to understand the general features
tion gives rise to a smooth broad distributipiw) with a of the phenomenon within the framework of the simplest
single characteristic frequency. In turn, it yields rather @ nodel. As a result. a number of details of the problem that
monotonic autocorrelation function with a single correlationmight ;':\ffect the be,havior of the true autocorrelation function
time 7o 1/e, which agrees with the mentioned numerical and :
experimental results. are not taken into account. Second, we do not hav-e any spe-
Let us consider a particular example of the Gaussian dis(-:'f'c reason to suppose that the tpf@v) in rea] experlments
tribution of randome, namely, does have the Gaussian form. Such a fo_rm is t.aken just as an
example to illustrate a more general discussion. Note also
that the small parameter of the developed approach is the
(6)  ratio\/A. In the experiments referenced, this ratio is about
5-7(see snapshots of disordered patterns in R&f8)), i.e.,

In this case the integral in E¢5) may be evaluated in terms it can hgrdly be regarded to be small enpugh for quantitative
of hypergeometric functions; however, it is more convenientomparison of the theory and the experiments.
to expand the cosine function in Taylor series and to inte- The author benefited from discussions with M.rBS.

1 2

p(w)= exp

1/
2\ wo

w2

grate it term by term. It gives rise to the expression Kai, and Y. Kuramoto. The author is grateful to M. Mimura
2 and T. Ochiai for being invited to the University of Tokyo
o(t)= 7f(w0t), and for the provision of excellent conditions under which to
carry out research. The author greatly appreciated the kind
o on () hospitality of Peter Fu!de, Sergej Flach, and other colleagues
f(x)EE (—1)n X ) at Max-Planck-Institut fuPhysik komplexer Systeme, where
n=0 (2m! the present work was completed.
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