
PHYSICAL REVIEW E MARCH 1999VOLUME 59, NUMBER 3
Statistical properties of chaos at onset of electroconvection
in a homeotropically aligned nematic layer

Michael I. Tribelsky*
Graduate School of Mathematical Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153, Japan
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The recently discovered chaos at the onset of electroconvection in a homeotropically aligned nematic layer
caused by slow random long-wavelength modulations of a roll pattern is discussed. The temporal autocorre-
lation function for components of the order parameter is expressed in terms of probability density for random
drift velocity of the pattern. It is shown that despite the fact that the problem has at least two different
characteristic times associated with the slow pattern dynamics, only one of them enters into the autocorrelation
function. @S1063-651X~99!12003-8#

PACS number~s!: 47.52.1j, 47.27.Cn, 47.65.1a, 61.30.Gd
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In the present paper a ‘‘paradox of two correlation time
~see below! for spatiotemporal chaos at the onset of elect
convection in a homeotropically aligned nematic layer~the
director is perpendicular to confining surfaces! is discussed,
exploded and removed. As a result, a simple formula for
temporal autocorrelation function of the problem is obtain

Systematic experimental study of disordered patterns
electroconvection under the specified conditions began ra
recently and was conducted, generally, by two groups;
Refs. @1–3# and @4–6#. Both groups observe the disordere
patterns at the very onset of electroconvection. Howe
there is a certain discrepancy in details of their observati
and measurements. The discrepancy probably is attribut
to differences in cells and material constants. To avoid m
understanding, we emphasize that in the case of discrep
we refer to the results of Refs.@1–3# rather than to those o
Refs.@4–6#. According to these results, spatiotemporal cha
~STC! is caused by continuous random spatiotempo
modulation of the local orientation of convective rolls. Th
characteristic spatial scale of the modulationL ~macroscale!
diverges ate50, wheree[(V22Vc

2)/Vc
2 stands for the nor-

malized control parameter,V for the applied voltage andVc
for the threshold of convective instability. At 0,e!1 this
scale is much greater than the corresponding microscal
the probleml ~double the roll diameter!. It makes the prob-
lem qualitatively different from other examples of chaos
onset, such as, e.g., STC associated with Hopf bifurca
supplemented by the Benjamin-Feir destabilization, or
one caused by Ku¨ppers-Lortz instability~see, for instance
review @7#, or for more recent results Refs.@8#!, where the
destabilizing modes have the same spatial scale as tha
the pattern itself.

The phenomenon is observed in a nematic with nega
dielectric anisotropy, where the Fre´edericksz transition@9#
precedes the convective instability. Due to the transition
purely homeotropic alignment of the director is distorted,
that at the threshold of the convective instability the direc
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has a nonzero projection on the plane of the nematic la
Since the azimuthal orientation of the director is not impos
by any external factor the system is degenerate with res
to arbitrary rotations of the director around any axis perp
dicular to the layer’s plane. For this reason, beyond
threshold of convective instability the corresponding lon
wavelength rotational modes become undamped@10#. On the
other hand, in a patterned state beyondVc the local orienta-
tion of the roll wave vectork is rigidly connected with the
azimuthal orientation of the director~see, e.g.,@7#!. Thus,
any change of the former causes the corresponding chang
the latter. For rolls that are perfectly straight and parallel
each other, a change in azimuthal orientation ofk means
rotation of the pattern as a whole~Goldstone mode!. In this
case, in a weakly nonlinear regime (0,e!1), undamped
modes detaching from the Goldstone one should corresp
to random rotations of different fragments of the pattern w
the characteristic spatial scale of the fragment of orderL.
Thus, changes of the components of the order param
~such as charge density, the velocity vector, etc.! at a given
fixed point are caused by drift of the pattern by this po
associated with the rotations.

One of the most important characteristics of any rand
process is its autocorrelation function. For the problem
question, temporal autocorrelation functions have been s
ied already, based upon the results of computer simulat
@11# and real experiment@2,3,6#. Both the computer simula
tions and the experiments say that the problem has a si
correlation timet scaled as 1/e and that the autocorrelatio
functions fall off to zero monotonically with increase o
time.

Note, however, that according to the described nature
the STC, the problem has at leasttwo different characteristic
time scales, viz.,l/v0 and L/v0 , wherev0 stands for the
characteristic drift velocity~provided there is a uniquev0 ;
otherwise the case becomes even more complicated!. If a
pattern consists of strictly spatially periodic rolls, its rotatio
as a whole gives rise to an autocorrelation function perio
in time with the periodl/v0 @12#. For this reason, it seem
natural to expect that for the true patterns distorted by c
otic long-wavelength modulations, the autocorrelation fun
tions are generally oscillating. The oscillation period shou

n-
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be of orderl/v0 , while the oscillation amplitude should de
cay on a much bigger time scale of orderL/v0 . In other
words, there should betwo substantially different correlation
time scales for the oscillations themselves and their de
respectively. This expectation disagrees drastically with
sults of Refs.@2,3,6,11# ~the paradox of ‘‘two correlation
times’’!. One of the goals of the present paper is to show t
the expectation is wrong and the above-mentioned nume
and experimental results are explained in a quite simple m
ner.

Let u(r ,t) be a scalar quantity denoting any component
the order parameter. Since we consider the autocorrela
function at a given fixed value ofr , only the time depen-
dence ofu is important. According to the specified scenar
such a dependence originates in a drift of almost spati
periodic roll pattern, so it has the form

u5AsinS E
0

t

v~ t8!dt81a0D ,

whereA may be regarded as a constant@13#, v[kv, k is a
constant roll’s wave number,v is the drift velocity slowly
varying in time, anda0 is a constant initial phase. Then, fo
the autocorrelation functionf(t) we have

f~ t !5^u~r ,t81t !u~r ,t8!&

5A2K sinS E
0

t81t
v~ t9!dt91a0D

3sinS E
0

t8
v~ t9!dt91a0D L

.
A2

2 K cosS E
t8

t81t
v~ t9!dt9D L

.
A2

2 K cosFv~ t8!t1
1

2
v̇~ t8!t21••• G L , ~1!

herev̇ denotes time derivative and

^•••&[ lim
T8→`

1

T8
E

0

T8
~••• !dt8

~we employed trivial trigonometric transformations and to
into account that the cosine of a sum of two phases i
rapidly oscillating function oft8 and therefore its average^ &
vanishes!.

Now note that ate small enough andany fixed t the
characteristic value ofv̇t2 in the argument of the cosine i
Eq. ~1! is always much smaller than one, i.e.,v̇t2, and that
all terms that are higher order int are also negligible quan
tities. Actually, a noticeable change ofv requires a time of
order L/v0 . It yields the estimationv̇t25O(kv0

2t2/L)→0
at e→0 due to the vanishing ofv and the divergence ofL, in
this limit. At finite small e neglect of v̇t2 results in the
following restriction fort:

t!
1

v0
AL

k
. ~2!
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On the other hand, we are interested in the case in which
phase of the cosine in Eq.~1! may be big enough. It results in
the conditionv0t@1, wherev0[kv0 . Consistency of this
condition with Eq.~2! gives rise to the inequalityALk@1,
which is always satisfied at smalle. Thus, at smalle the
leading approximation to the autocorrelation function rea

f~ t !5
A2

2
^cos@v~ t8!t#&1•••, ~3!

so that the second characteristic time of the problemL/v0
does not enter into the expression at all.

Note that the averaging overt8 is equivalent to that over
v. Actually, transforming the integral overt8 into an integral
sum by discretizing ofv @letting v(t8) have only discrete
values from a setvn , where the ‘‘spacing’’Dv[vn11
2vn has the same value at anyn#, and rearranging terms in
the sum, putting together all terms with the same value
vn , we arrive at the expression

1

T8
E

0

T8
cos@v~ t8!#dt85 lim

Dv→0
(

n
~cosvn!

3
1

T8
~Dtn

~1!81Dtn
~2!81••• !, ~4!

whereDtn
(1)8 ,Dtn

(2)8 , . . . is the entire set of time segmen
within which the discretized functionvn(t) has a given
value. Bearing in mind that by definition

lim
T8→`

1

T8
~Dtn8

~1!1Dtn8
~2!1••• !

is the probability for a random functionvn(t) to have a
given value, settingDv to zero, and replacing the sum in E
~4! by the corresponding integral, we transform Eq.~3! into
the form

f~ t !5
A2

2 E ~cosvt !p~v!dv, ~5!

wherep(v) stands for the probability density. From the no
malization condition, it follows that*p(v)dv51. Thus, in-
tegral ~5! always converges, being a smooth, differentia
function of t. Note thatp(v) should be an even function o
v due to the equivalence of clockwise and counterclockw
rotations, so that̂v2n11&50, n50,1,2, . . . .

Equation~5! yields a number of important conclusion
First, expression~5! is an even function oft, which has a
smooth maximum att50 and tends to zero att→`. In other
words, none of the generic properties of autocorrelat
functions@14# is violated.

Second, none of the correlation characteristics of rand
v enters into Eq.~5!. The only quantity the correlation func
tion f(t) depends on is the probability densityp(v).

Third, if p(v)5d(v2v0), which corresponds to a
strictly spatially periodic pattern with a fixed drift velocity
Eq. ~5! yieldsf(t)5(A2/2)cosv0t, i.e., the mentioned oscil
lating behavior of the autocorrelation function is recovere
In the opposite limit, whenp(v) is a smooth function with a



-

s

a
on

to
o
rn
v

s
io

n

-

a
on
nd

di

s
en
te

ion

tal

-
ures
st

hat
on
spe-

s an
lso
the
ut

tive

a
o
to
ind
ues
e

PRE 59 3731BRIEF REPORTS
certain unique characteristicv0 ~now v0 describes the dis
persion of the distribution!, integration in Eq.~5! results in a
f(t) of the form (A2/2) f (v0t), where f (x) is a smooth
function, satisfying the conditionf (0)51 and falling off to
zero atx of order one. It means the problem possesse
single correlation time, which is nothing butt51/v0 .

It should be emphasized that the obtained results are v
at t@t, i.e., the long-time behavior of the autocorrelati
function is discussed. Only the very tail off(t) at t violating
condition ~2! deviates from expression~5!. This tail, how-
ever, is not of interest, sincef(t) is practically zero in this
region.

To understand which of the limits,p(v)5d(v2v0) or a
smooth broad distribution, is closer to reality, we have
remember the proposed mechanism of chaotization ass
ated with rotations of different fragments of a roll patte
around random axes with random angular velocities. Ob
ously, in this case the distributionp(v) must have a certain
nonzero dispersion. Note further thatv0 may be estimated a
a product of the characteristic angular velocity of the rotat
(]w/]t, wherew is the azimuthal angle of the director! and
the characteristic spatial scale of the rotating fragme
which is L. Adopting for these quantities thee scaling em-
ployed in Refs.@11#, i.e., supposing thatL}1/Ae and rota-
tion through an angle ofO(Ae) takes time}1/e, we obtain
a uniquecharacteristic valuev0}e. Thus, the model in ques
tion gives rise to a smooth broad distributionp(v) with a
single characteristic frequency. In turn, it yields rather
monotonic autocorrelation function with a single correlati
time t}1/e, which agrees with the mentioned numerical a
experimental results.

Let us consider a particular example of the Gaussian
tribution of randomv, namely,

p~v!5
1

v0A2p
exp F2

1

2S v

v0
D 2G . ~6!

In this case the integral in Eq.~5! may be evaluated in term
of hypergeometric functions; however, it is more conveni
to expand the cosine function in Taylor series and to in
grate it term by term. It gives rise to the expression

f~ t !5
A2

2
f ~v0t !,

~7!

f ~x![ (
n50

`

~21!n
x2n

~2n!!!
.

e
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a
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Series~7! converges at any finitex. The function f (x) de-
fined according to Eq.~7! falls off monotonically to zero
with increase ofx; see Fig. 1. Despite the fact thatf (x) is not
reduced to a simple exponential function, its approximat
by such a function may be quite reasonable.

Basically, Fig. 1 is in good agreement with experimen
curves presented in Refs.@2,3#. A certain difference in details
~broader maximum atx50 and sharper decay atx!1 com-
pared to the experimental curves! should not be overevalu
ated. First, our intention is to understand the general feat
of the phenomenon within the framework of the simple
model. As a result, a number of details of the problem t
might affect the behavior of the true autocorrelation functi
are not taken into account. Second, we do not have any
cific reason to suppose that the truep(v) in real experiments
does have the Gaussian form. Such a form is taken just a
example to illustrate a more general discussion. Note a
that the small parameter of the developed approach is
ratio l/L. In the experiments referenced, this ratio is abo
5–7 ~see snapshots of disordered patterns in Refs.@2,3#!, i.e.,
it can hardly be regarded to be small enough for quantita
comparison of the theory and the experiments.

The author benefited from discussions with M. Ba¨r, S.
Kai, and Y. Kuramoto. The author is grateful to M. Mimur
and T. Ochiai for being invited to the University of Toky
and for the provision of excellent conditions under which
carry out research. The author greatly appreciated the k
hospitality of Peter Fulde, Sergej Flach, and other colleag
at Max-Planck-Institut fu¨r Physik komplexer Systeme, wher
the present work was completed.

FIG. 1. The autocorrelation functionf (x), obtained for the
Gaussian distribution of randomv @see Eqs.~6!, ~7!#.
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